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Orthomodular lattices and posers, orthoalgebras, and D-posets are all examples 
of partial Abelian semigroups. So, too, are the event structures of test spaces. 
The passage from an algebraic test space to its logic (an orthoalgebra) is an 
instance of a general construction involving a partial Abelian semigroup L and 
a distinguished subset M C L such that perspectivity with respect to M is a 
congruence on L. The quotient of L by such a congruence is always a cancellative, 
unital PAS, and every such PAS arises canonically as such a quotient. 

I N T R O D U C T I O N  

Recently, certain ordered sets equipped with a partial addition have 
received much attention as generalizations o f  "quantum logics," i.e., of  ortho- 
modular  lattices and posets. These include orthoalgebras (Foulis et al., 1992) 
and the so-called D-posers introduced by K6pka and Chovanec (1994). The 
purpose of  this note is to point out that the study of  such objects gains much 
in clarity when cast in terms of  a more general theory o f  partial Abelian 
semigroups. For instance, the representation of  an orthoalgebra as the logic 
of  a manual (or algebraic test space) is seen to be a special case o f  a 
very general construction. In particular, one sees easily how to obtain a 
representation theory for D-posets that as "logics" of  certain collections of  
integer-valued functions. 

In what  follows, we shall omit most  of  the proofs, which are quite 
straightforward. A more detailed account  will appear elsewhere. 

1. PARTIAL ABELIAN SEMIGROUPS, ORTHOALGEBRAS, 
AND D-ALGEBRAS 

By a part ial  Abel ian semigroup (PAS) we mean a structure (L, •  O),  
where 2. is a binary relation on L and �9 is a partially defined binary operation 
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with domain 2- satisfying 

p @ q  = q @ p  (1) 

(p �9 q) �9 r = p @ (q @ r) (2) 

(These identities are to be understood as asserting that if the term on either 
side is defined, so is that on the other, and the two are equal.) 

We say that a PAS L is cancelative iff for all a, b, c E L, a 2_ c 2_ b 
and a @ c = b @ c entail a = b. A zero in L is an element 0 such that p 
2_ 0 for all p ~ L and p @ 0 = 0. If  L is cancelative, it has at most one 
zero. One can always adjoin a zero formally; we shall therefore assume 
henceforth that every PAS (and, in particular, every Abelian semigroup) 
possesses a zero. We shall say that L is positive iff for all p, q E L, p @ q 
= 0 o n l y i f p  = q  = 0 .  

Any PAS carries a natural preordering p _< q ~ 3 r  p @ r = q. 

Lemma 1. If L is positive and cancelative, ----- is a partial ordering. If  <- 
is a partial ordering, L is positive. 

The following examples are of  particular importance. 
1. Let ,~ be a collection of  sets, and let E = E ( ~ )  denote the set o f  all 

subsets o f  elements o f , ~ .  For a, b E L, set a _1_ b iff a U b ~ E and a N 
b = O, in which case define a @ b = a U b. Then E is a cancelative, 
positive PAS. 

2. Let ~ be a collection of  nonnegative integer-valued functions on a 
set X, and let E (~ )  denote the set of  all functions f :  X ~ Z+ such that for 
some e ~ ~ , f - <  e. S e t f  2- g i f f f +  g ~ E, in which case define f @  g = 

f + g. Note that if all the functions in ~ are {0, 1 }-valued, we recover 
Example 1. 

A unit in a PAS L is an element 1 E L such that for every a ~ L, there 
exists at least one b c L such that a @ b = 1. A unital PAS is a PAS with 
a distinguished unit 1. Evidently, an element 1 E L is a unit iff a --< 1 for 
every a E L. If  --< is a partial ordering, L has at most  one u n i t - - i n  particular, 
if L is cancelative and positive, 1 is unique. 

Let L be a cancelative, unital PAS with unit 1. We call L a D-algebra 
i f f f o r a l l p  ~ L 

p •  l e x i s t s ~ p = 0  (3) 

L is an orthoalgebra iff for every p ~ L, 

p •  (4) 

Our terminology is intended as a hybrid: What  we call a D-algebra coincides 
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with what Foulis and Bennett (1994) call an effect algebra, which in turn is 
the same thing as a D-poset in the sense of K6pka and Chovanec (1994). 

It is easy to see that a cancelative PAS is a D-algebra iff it is positive 
and bounded as a poset. Thus, examples of D-algebras are plentiful; indeed, 
any cancelative, positive PAS L is infested with D-algebras: For any e E L 
and any p, q -< e, define p I ~  q i f f p  �9 q --< e. Then ([0, e], I e, O,  0, e) 
is a D-algebra. 

1.1. Homomorphisms and Congruences 

If  L and M are two PASs, a function f :  L ---> M is a homomorphism iff 
f (O) = O p L q ~ f ( p )  I f ( q )  a n d f ( p  O q) = f ( p )  Of (q ) .  A homomorphism 
is faithful i f f f ( a )  I f (b)  ~ a I b. 

Note that an isomorphism (i.e., a homomorphism with a two-sided 
inverse) is the same thing as a bijective, faithful homomorphism. The trivial 
homomorph i smf :  S ---> {0} is faithful iff S is a semigroup, i.e., iff a I b 
for all a, b ~ s. 

A subset M of a PAS L is a sub-PAS iff it is closed under existing sums. 
If f :  L ---> S is faithful, f(L) C_ S is a sub-PAS orS.  

A congruence on a PASS is an equivalence relation ~- on S such that 
for a l l a ,  b , c  ~ S , a  ~ b a n d a  I c i m p l y b  I c a n d a O c - - -  b O c .  

Let -~ be a congruence on L and denote by [a] the equivalence class of 
a E L under = .  The partial operation [a] �9 [b] = [a �9 b], defined for pairs 
a I b, is well defined, and makes L/~-- into a PAS. The map [-]: L --> L/~- 
is a faithful homomorphism. Conversely, if f :  L ---> M is a faithful surjective 
homomorphism, the relation a ~- b r f (a)  = f (b)  is a congruence, and L is 
canonically isomorphic to L/=. 

Not every equivalence relation on a PAS L generates a congruence. 
Indeed, the universal relation L x L is a congruence iff the homomorphism 
f :  L ---> {0} is faithful, in which case L is a semigroup. 

1.2. Summable Sets and Functions 

In dealing with a partial binary operation, even one that is commutative 
and associative, the notion of summability is a bit delicate. Things do work 
as one would hope, but to establish this requires some care. Here, we merely 
remark that for a~ . . . . .  an ~ L, the sum a~ G "'" �9 an exists iff any of the 
iterated sums, e.g., ( . . .  (al | a2) �9 . . . )  �9 a,,, exist, and is independent of 
the ordering. We shall call a finitely nonzero function f :  I ---> L summable 
iff the sum OsE1f(i) exists. A subset A of L is summable iff the inclusion 
map ia: A --~ L is summable. One can prove that if f, g: I ---> L are summable, 
then f +  g is summable i f f O f I  Og, and in this case, O ( f +  g) = (OJ) �9 (Og.) 
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For any a ~ L, we define a partial function n ~ na from Z+ to S by 
induction: Define la  = a. If  na has been defined and na ~_ a, then set (n + 
1)a = na �9 a. Let p(a) be the greatest n ~ N for which na is defined, if 
any, and set p(a) = oo otherwise. We call p(a) the rank of a ~ S. Note that 
if n + k --- p(a), then (n + k)a = na �9 ka. 

A summablefunction on L is a finitely nonzero function f :  L --> Z+ such 
that O f :  = O ~ s f ( a ) a  exists. We denote the collection of summable functions 
on L by @(L). I f f  E @(L) and g: L ---> Z+ with g(a) <- f(a)  for all a ~ S, 
then g s @(L); hence, @(L) is a PAS under the restricted a d d i t i o n f O  g = 
f + g, provided this is again in ~(L).  

One has the following generalized associative law: 

Lemma 2. For all f, g ~ ~(L),  f / g iff O f  J_ Og, and in this case, 
O f O  O g  = O ( f  + g). 

Note that the substance of this is that the map f ~ O f  is a faithful 
surjective homomorphism from ~(L)  into L. Thus: Every PAS is the faithful 
homomorphic image of  its PAS of  summable functions. In particular, every 
PAS is the faithful homomorphic image of a cancelative, positive PAS. 

2. A L G E B R A I C  SETS 

There is a standard representation theory for orthoalgebras in terms of 
so-called manuals or algebraic test-spaces. In this section, we introduce a 
generalization of this notion, and in particular, produce a representation for 
D-algebras in terms of manual-like collections of functions. 

Let L be a PAS and M C_ L. Say that a, b E L are complementar}, 
relative to M, writing a c b, iff a .5 b and a �9 b ~ M. We say that a and 
b are perspective relative to M, writing a -- b, iff there exists x ~ L such 
t h a t a c x c b .  N o t e t h a t a - 0 i f f a c b f o r s o m e b  E M, and that if a, b E 
M, then a -- b. 

A subset M _C L is algebraic iff the relation - is a congruence. If  --M 
is the congruence on L induced by an algebraic subset M C L, we write 
L/M for L/--M and [. ]M for the canonical surjection L --> L/M. 

If  M is algebraic, then a -- a for every a ~ L; hence, there is some c 
L with a �9 c ~ M. Thus, an algebraic set must be dominating with respect 

to the preorder --<, i.e., for every a ~ L there is some b E M with a --< b. 
By way of example, let si  be any collection of sets and let L = E(M). 

Then M = ai is algebraic in L iff gl is algebraic in the sense of Foulis and 
Bennett (1994); in that case, L/M is the logic of s4. 

Lemma 3. Let M be an algebraic subset of  L. Then L/M is cancelative 
and unital. 
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Lemma 4. Let (b: L ~ L' be a faithful surjective homomorphism. If L 
C__ M is algebraic, then qb-l(M) C_ L is algebraic and L/cb-I(M) ~-- L'/M. 

Using the preceding lemmas, it is not hard to prove the following: 

Proposition 1. Let L be any unital PAS and let M denote the set of all 
f ~ ~ (L)  such that @f = 1. Then M is dominating and algebraic, and A(L) 
"= ~ ( L ) / M  is universal among faithful cancellative images of L in that any 
faithful homomorphism d~: L --~ L', L' a cancellative PAS, factors uniquely 
through A(L). 

A similar result is available if L is not unital. We omit the details. 
From Proposition 1 we obtain the following generalization of the repre- 

sentation theorem for orthoalgebras: 

Corollary. Let L be a cancellative, unital PAS and let M C_ ~ (L)  be as 
in Proposition 2. Then L -=- ~(L) /M.  

Notice that a D-algebra is an orthoalgebra iff the rank function p(a) is 
{0, 1 }-valued; in this case, ~ (L)  consists likewise of {0, 1 }-valued functions, 
i.e., of  the characteristic functions of subsets of L. Hence E(L) = ~(L),  and 
M is simply the manual of finite orthopartitions of 1 in L. Thus, we recover 
the standard representation theory of orthoalgebras as logics of manuals as 
a special case of Proposition 1. We should also mention that the representation 
theory developed here is closely related to one given by Dvurecenskij and 
Pulmannovfi (1994) in terms of so-called D-test spaces. For a comparison 
of the two approaches, see Pulmannovit and Wilce (1994). 

D-Posers and effect algebras have been put forward as models of "fuzzy" 
or "unsharp" quantum logics. Since a standard model of a fuzzy set is a 
[0, 1]-valued function, the following construction seems particularly 
intriguing. 

Let L = [0, 1] (understood as a D-algebra), and let s~ be a manual of 
sets with outcome set X. Let &t denote the collection of all characteristic 
functions XE with E E ~ .  For each f :  X--~ [0, 1], letAr = {xl0 < f ( x )  < 
1} and St -- {xlf(x)  > 0} = Ar U f - I (1 )  �9 Then E(2s is the collection of all 
functions f with Sf E E(s~). Note that for all A E E(M), XA E E(,J~). NOW 
letf ,  g , h , k  E E(o4~) with f +  g = xE, g + h = XF, a n d h  + k = xGfor  
someE,  F , G  ~ s ~ . T h e n A [ = A s  =At ,  = Ak = A C_ E N F (~ G and f + 
k -= 1 on A. Also note that S s c g - l ( l )  c Sh c k-t(1). Since ~ is a manual, 
St" c k- l ( l ) ,  whence Sf U k-l(1) = H ~ ,~. Since At -- A, we have H --- 
f - l ( 1 )  U A U k-I(1); it follows t h a t f  + k = XH. Hence, ~ is algebraic in 
E(&), whence H(&) = E(N)/ - -  is a eancelative, unital PAS by Lemma 3. 

In fact, we claim H(N)  is a D-algebra. It suffices to show that I I ( ~ )  
is positive. Suppose f, g ~ E(AI). If f @  g --M 0, t h e n f Q  g �9 X~ = XF for 
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some E, F ~ N.  It follows that E ___ F. Since N is algebraic, this entails E 
= F, whence f @ g is identically 0 on X. Hence,  f ,  g = 0. Thus, H ( N )  is a 
D-algebra,  as claimed. 

Note that for A, B ~ E(,~), XA ~ NB iff A -- B in E(s~) with respect to 
s~- - i . e . ,  I I ( ,~ )  contains the orthoalgebra II(s~) as a sub-D-algebra.  

It should be noted that this construction works perfectly well with any 
D-algebra  in place of  [0, 1]. More generally, if X is any set, L is any PAS, 
and M C L x, we may  construct the PAS E(M) consisting of  functions g 
L x with g -< f for some f ~ M. Let us agree to call M an L-manual iff M is 
algebraic in E(M) and E(M)/M is a D-algebra.  Thus, the example  above is 
a [0, 1J-manual, while a {0, l}-manual  is s imply a manual  of  sets in the 
ordinary sense. I f  L is cancelative and positive, then for any L-manual  the 
quotient I I (M)  := E(M)/M will be a D-algebra.  
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